Optimasi Perancangan Sistem Kontrol Mesin CNC Pengebor PCB berbasis Ant Colony Optimization

Authors

  • Elfizar Novrianto Universitas Darul ‘ulum
  • Machrus Ali Universtas Darul Ulum
  • Hidayatul Nurohmah Universitas Darul Ulum

DOI:

https://doi.org/10.32492/nucleus.v2i2.2202

Keywords:

cNC, PCB, PID, Ant Colony Optimization

Abstract

A Print Circuit Board (PCB) is a micro (small) sized board that contains various electronic components that are used in an automatic circuit. PCB drilling is usually done manually with human power, which takes a lot of time when there are more and more holes in the PCB. And precision is required when the drill bit touches the PCB board which creates frictional forces and can cause drilling errors. This research uses data collection after carrying out several simulation methods using Matlab 13a. With optimal division methods including without control, Conventional PID, auto PID and PID - ACO. The aim of this research is to determine the advantages of the Ant Colony Optimization (ACO) method in controlling Computer Numerical Control (CNC) machines. The simulation results show that the best optimization method is produced by the PID - Ant Colony Optimization method which produces overshoot: 0.1199, undershoot: 0.0544, and settling time at 2.532 seconds which is the smallest value, while the design without control never reaches stable steady with the largest undershot. : 0.523. so PID - Ant Colony Optimization was chosen as the best method and is suitable for use in controlling PCB Drilling CNC Machines. By applying the PID - Ant Colony Optimization method to the CNC PCB Drilling Machine, it will be able to produce more precise drilling results

References

M. Fatriyana, “Cnc Program And Programming Of Cnc Machine,” J. Mech. Sci. Eng., vol. 7, no. 1, pp. 019–023, Oct. 2020, doi: 10.36706/jmse.v7i1.37.

M. Ali, “Optimasi Pemograman Sistem Pengendalian Mesin CNC Pengebor PCB Berdasar Metode Firefly Algorithm,” ALINIER J. Artif. Intell. Appl., vol. 3, no. 2, pp. 28–37, Dec. 2022, doi: 10.36040/alinier.v3i2.5840.

E. Satrio et al., “Perancangan Sistem Kontrol CNC Pengebor PCB Otomatis Berbasis Raspberry PI.”

M. Ali, A. Siswanto, and M. Baehaqi, “Flower Polination Algorithm Sebagai Optimalisasi LFC Pada Hybrid Pembangkit Wind-Diesel,” J. FORTECH, vol. 5, no. 1, pp. 41–47, May 2024, doi: 10.56795/fortech.v5i1.5106.

Hidayatul Nurohmah, M. Ali, Rukslin, Dwi Ajiatmo, and Muhammad Agil Haikal, “Komparasi PID, FLC, dan ANFIS sebagai Kontroller Dual Axis Tracking Photovoltaic berbasis Bat Algorithm,” J. JEETech, vol. 3, no. 2, pp. 71–77, Sep. 2022, doi: 10.48056/jeetech.v3i2.197.

N. Kanagaraj, “An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance,” Intell. Autom. Soft Comput., vol. 35, no. 3, pp. 3213–3226, 2023, doi: 10.32604/iasc.2023.029901.

Machrus Ali, Ruslan Hidayat, and Iwan Cahyono, “Penggunaan ANFIS pada Pengaturan Debit Air Berdasarkan Volume Air Dalam Tangki,” ALINIER J. Artif. Intell. Appl., vol. 1, no. 1, pp. 24–32, 2020, doi: 10.36040/alinier.v1i1.2519.

M. Arrohman, R. Fajardika, M. Muhlasin, and M. Ali, “Optimasi Frekuensi Kontrol pada Sistem Hybrid Wind-Diesel Menggunakan PID Kontroler Berbasis ACO dan MFA,” J. Rekayasa Mesin, vol. 9, no. 1, pp. 65–68, May 2018, doi: 10.21776/ub.jrm.2018.009.01.10.

C. Blum, “Ant colony optimization: Introduction and recent trends,” 2005. doi: 10.1016/j.plrev.2005.10.001.

A. Sharma, S. Sharma, and D. Gupta, “Ant Colony Optimization Based Routing Strategies for Internet of Things,” Evergreen, vol. 10, no. 2, pp. 998–1009, 2023, doi: 10.5109/6793654.

A. Hwas and R. Katebi, “Wind Turbine Control Using PI Pitch Angle Controller,” IFAC Conf. Adv. PID Control, 2012.

H. Shamkhalichenar, C. J. Bueche, and J. W. Choi, “Printed Circuit Board (PCB) Technology for Electrochemical Sensors and Sensing Platforms,” 2020. doi: 10.3390/bios10110159.

E. Prianto and H. S. Pramono, “Eko Prianto: Proses Permesinan CNC Dalam Pembelajaran Simulasi CNC Proses Permesinan Cnc Dalam Pembelajaran Simulasi CNC.”

M. R. Djalal et al., “Aplikasi Metode Cerdas Untuk Optimasi Controller Pid Motor Dc Berbasis Firefly Algorithm,” vol. 6, no. 2, 2017, doi: 10.20449/jnte.v6i2.393.

D. Udjulawa and S. Oktarina, “Penerapan Algoritma Ant Colony Optimization Untuk Pencarian Rute Terpendek Lokasi Wisata,” Klik - J. Ilmu Komput., vol. 3, no. 1, pp. 26–33, 2022, doi: 10.56869/klik.v3i1.326.

Downloads

Published

2023-11-05

How to Cite

Novrianto, E., Ali, M., & Nurohmah, H. (2023). Optimasi Perancangan Sistem Kontrol Mesin CNC Pengebor PCB berbasis Ant Colony Optimization. Nucleus Journal, 2(2), 82–94. https://doi.org/10.32492/nucleus.v2i2.2202

Issue

Section

Articles